
MySQL Proxy Guide

MySQL Proxy Guide
Abstract

This is the MySQL Proxy extract from the MySQL Reference Manual.

Document generated on: 2009-06-02 (revision: 15161)

Copyright © 1997-2008 MySQL AB, 2009 Sun Microsystems, Inc. All rights reserved. U.S. Government Rights - Commercial software. Govern-
ment users are subject to the Sun Microsystems, Inc. standard license agreement and applicable provisions of the FAR and its supplements. Use is
subject to license terms. Sun, Sun Microsystems, the Sun logo, Java, Solaris, StarOffice, MySQL Enterprise Monitor 2.0, MySQL logo and
MySQL are trademarks or registered trademarks of Sun Microsystems, Inc. in the U.S. and other countries. UNIX is a registered trademark in the
U.S. and other countries, exclusively licensed through X/Open Company, Ltd.

Copyright © 1997-2008 MySQL AB, 2009 Sun Microsystems, Inc. Tous droits réservés. L'utilisation est soumise aux termes du contrat de li-
cence.Sun, Sun Microsystems, le logo Sun, Java, Solaris, StarOffice, MySQL Enterprise Monitor 2.0, MySQL logo et MySQL sont des
marques de fabrique ou des marques déposées de Sun Microsystems, Inc. aux Etats-Unis et dans d'autres pays. UNIX est une marque déposée aux
Etats-Unis et dans d'autres pays et licenciée exlusivement par X/Open Company, Ltd.

This documentation is NOT distributed under a GPL license. Use of this documentation is subject to the following terms: You may create a printed
copy of this documentation solely for your own personal use. Conversion to other formats is allowed as long as the actual content is not altered or
edited in any way. You shall not publish or distribute this documentation in any form or on any media, except if you distribute the documentation in
a manner similar to how Sun disseminates it (that is, electronically for download on a Web site with the software) or on a CD-ROM or similar me-
dium, provided however that the documentation is disseminated together with the software on the same medium. Any other use, such as any dis-
semination of printed copies or use of this documentation, in whole or in part, in another publication, requires the prior written consent from an au-
thorized representative of Sun Microsystems, Inc. Sun Microsystems, Inc. and MySQL AB reserve any and all rights to this documentation not ex-
pressly granted above.

For more information on the terms of this license, for details on how the MySQL documentation is built and produced, or if you are interested in
doing a translation, please contact the Documentation Team.

For additional licensing information, including licenses for libraries used by MySQL, see Preface, Notes, Licenses.

If you want help with using MySQL, please visit either the MySQL Forums or MySQL Mailing Lists where you can discuss your issues with other
MySQL users.

For additional documentation on MySQL products, including translations of the documentation into other languages, and downloadable versions in
variety of formats, including HTML, CHM, and PDF formats, see MySQL Documentation Library.

http://www.mysql.com/company/contact/
http://dev.mysql.com/doc/refman/5.0/en/preface.html
http://forums.mysql.com
http://lists.mysql.com
http://dev.mysql.com/doc

MySQL Proxy
The MySQL Proxy is an application that communicates over the network using the MySQL Network Protocol and provides com-
munication between one or more MySQL servers and one or more MySQL clients. In the most basic configuration, MySQL Proxy
simply passes on queries from the client to the MySQL Server and returns the responses from the MySQL Server to the client.

Because MySQL Proxy uses the MySQL network protocol, any MySQL compatible client (include the command line client, any
clients using the MySQL client libraries, and any connector that supports the MySQL network protocol) can connect to the proxy
without modification.

In addition to the basic pass-through configuration, the MySQL Proxy is also capable of monitoring and altering the communica-
tion between the client and the server. This interception of the queries enables you to add profiling, and the interception of the ex-
changes is scriptable using the Lua scripting language.

By intercepting the queries from the client, the proxy can insert additional queries into the list of queries sent to the server, and re-
move the additional results when they are returned by the server. Using this functionality you can add informational statements to
each query, for example to monitor their execution time or progress, and separately log the results, while still returning the results
from the original query to the client.

The proxy allows you to perform additional monitoring, filtering or manipulation on queries without you having to make any modi-
fications to the client and without the client even being aware that it is communicating with anything but a genuine MySQL server.

Warning

MySQL Proxy is currently an Alpha release and should not be used within production environments.

Important

MySQL Proxy is compatible with MySQL 5.0.x or later. Testing has not been performed with Version 4.1. Please
provide feedback on your experiences via the MySQL Proxy Forum.

iv

http://forums.mysql.com/list.php?146

Chapter 1. MySQL Proxy Supported Platforms
MySQL Proxy is currently available as a pre-compiled binary for the following platforms:

• Linux (including RedHat, Fedora, Debian, SuSE) and derivatives.

• Mac OS X

• FreeBSD

• IBM AIX

• Sun Solaris

• Microsoft Windows (including Microsoft Windows XP, and Microsoft Windows Server 2003)

Other Unix/Linux platforms not listed should be compatible by using the source package and building MySQL Proxy locally.

System requirements for the MySQL Proxy application are the same as the main MySQL server. Currently MySQL Proxy is com-
patible only with MySQL 5.0.1 and later. MySQL Proxy is provided as a standalone, statically linked binary. You do not need to
have MySQL or Lua installed.

1

Chapter 2. Installing MySQL Proxy
You have three choices for installing MySQL Proxy:

• Pre-compiled binaries are available for a number of different platforms. See Section 2.1, “Installing MySQL Proxy from a bin-
ary distribution”.

• You can install from the source code if you want to build on an environment not supported by the binary distributions. See Sec-
tion 2.2, “Installing MySQL Proxy from a source distribution”.

• The latest version of the MySQL proxy source code is available through a development repository is the best way to stay up to
date with the latest fixes and revisions. See Section 2.3, “Installing MySQL Proxy from the Subversion repository”.

2.1. Installing MySQL Proxy from a binary distribution
If you download the binary packages then you need only to extract the package and then copy the mysql-proxy file to your de-
sired location. For example:

shell> tar zxf mysql-proxy-0.5.0.tar.gz
shell> cp ./mysql-proxy-0.5.0/sbin/mysql-proxy /usr/local/sbin

2.2. Installing MySQL Proxy from a source distribution
If you have downloaded the source package then you will need to compile the MySQL Proxy before using it. To build you will
need to have the following installed:

• libevent 1.x or higher (1.3b or later is preferred)

• lua 5.1.x or higher

• glib2 2.6.0 or higher

• pkg-config

• MySQL 5.0.x or higher developer files

Note

On some operating systems you may need to manually build the required components to get the latest version. If you
are having trouble compiling MySQL Proxy then consider using one of the binary distributions.

Once these components are installed, you need to configure and then build:

shell> tar zxf mysql-proxy-0.5.0.tar.gz
shell> cd mysql-proxy-0.5.0
shell> ./configure
shell> make

If you want to test the build, then use the check target to make:

shell> make check

The tests try to connect to localhost using the root user. If you need to provide a password, set the MYSQL_PASSWORD en-
vironment variable:

shell> MYSQL_PASSWORD=root_pwd make check

You can install using the install target:

shell> make install

By default mysql-proxy is installed into /usr/local/sbin/mysql-proxy. The Lua example scripts are copied into /
usr/local/share.

2

2.3. Installing MySQL Proxy from the Subversion repository
The MySQL Proxy source is available through a public Subversion repository and is the quickest way to get hold of the latest re-
leases and fixes.

To build from the Subversion repository, you need the following components already installed:

• Subversion 1.3.0 or higher

• libtool 1.5 or higher

• autoconf 2.56 or higher

• automake 1.9 or higher

• libevent 1.x or higher (1.3b or later is preferred)

• lua 5.1.x or higher

• glib2 2.4.0 or higher

• pkg-config

• MySQL 5.0.x or higher developer files

To checkout a local copy of the Subversion repository, use svn:

shell> svn co http://svn.MySQL.com/svnpublic/mysql-proxy/ mysql-proxy

The above command will download a complete version of the Subversion repository for mysql-proxy. The main source files are
located within the trunk subdirectory. The configuration scripts need to be generated before you can configure and build
mysql-proxy. The autogen.sh script will generate the configuration scripts for you:

shell> sh ./autogen.sh

The script creates the standard configure script, which you can then use to configure and build with make:

shell> ./configure
shell> make
shell> make install

If you want to create a standalone source distribution, identical to the source distribution available for download:

shell> make distcheck

The above will create the file mysql-proxy-0.5.0.tar.gz within the current directory.

Installing MySQL Proxy

3

Chapter 3. MySQL Proxy Command-Line Options
To start mysql-proxy you can just run the command directly. However, for most situations you will want to specify at the very
least the address/host name and port number of the backend MySQL server to which the MySQL Proxy should pass on queries.

You can get a list of the supported command-line options using the --help-all command-line option. The majority of these op-
tions set up the environment, either in terms of the address/port number that mysql-proxy should listen on for connections, or
the onward connection to a MySQL server. A full description of the options is shown below:

• --help-all — show all help options.

• --help-admin — show options for the admin-module.

• --help-proxy — Show options for the proxy-module.

• --admin-address=host:port — specify the host name (or IP address) and port for the administration port. The default
is localhost:4041.

• --proxy-address=host:port — the listening host name (or IP address) and port of the proxy server. The default is
localhost:4040.

• --proxy-read-only-backend-address=host:port — the listening host name (or IP address) and port of the
proxy server for read-only connections. The default is for this information not to be set.

• --proxy-backend-addresses=host:port — the host name (or IP address) and port of the MySQL server to connect
to. You can specify multiple backend servers by supplying multiple options. Clients are connected to each backend server in
round-robin fashion. For example, if you specify two servers A and B, the first client connection will go to server A; the second
client connection to server B and the third client connection to server A.

• --proxy-skip-profiling — disables profiling of queries (tracking time statistics). The default is for tracking to be en-
abled.

• --proxy-fix-bug-25371 — gets round an issue when connecting to a MySQL server later than 5.1.12 when using a
MySQL client library of any earlier version.

• --proxy-lua-script=file — specify the Lua script file to be loaded. Note that the script file is not physically loaded
and parsed until a connection is made. Also note that the specified Lua script is reloaded for each connection; if the content of
the Lua script changes while mysql-proxy is running then the updated content will automatically be used when a new con-
nection is made.

• --daemon — starts the proxy in daemon mode.

• --pid-file=file — sets the name of the file to be used to store the process ID.

• --version — show the version number.

The most common usage is as a simple proxy service (i.e. without addition scripting). For basic proxy operation you must specify
at least one proxy-backend-addresses option to specify the MySQL server to connect to by default:

shell> mysql-proxy
--proxy-backend-addresses=MySQL.example.com:3306

The default proxy port is 4040, so you can connect to your MySQL server through the proxy by specifying the host name and port
details:

shell> mysql --host=localhost --port=4040

If your server requires authentication information then this will be passed through natively without alteration by mysql-proxy,
so you must also specify the authentication information if required:

shell> mysql --host=localhost --port=4040 \
--user=username --password=password

You can also connect to a read-only port (which filters out UPDATE and INSERT queries) by connecting to the read-only port. By
default the host name is the default, and the port is 4042, but you can alter the host/port information by using the -
-proxy-read-only-address command-line option.

4

http://dev.mysql.com/doc/refman/5.0/en/update.html
http://dev.mysql.com/doc/refman/5.0/en/insert.html

For more detailed information on how to use these command line options, and mysql-proxy in general in combination with Lua
scripts, see Chapter 5, Using MySQL Proxy.

MySQL Proxy Command-Line Options

5

Chapter 4. MySQL Proxy Scripting
You can control how MySQL Proxy manipulates and works with the queries and results that are passed on to the MySQL server
through the use of the embedded Lua scripting language. You can find out more about the Lua programming language from the
Lua Website.

The primary interaction between MySQL Proxy and the server is provided by defining one or more functions through an Lua script.
A number of functions are supported, according to different events and operations in the communication sequence between a client
and one or more backend MySQL servers:

• connect_server() — this function is called each time a connection is made to MySQL Proxy from a client. You can use
this function during load-balancing to intercept the original connection and decide which server the client should ultimately be
attached to. If you do not define a special solution, then a simple round-robin style distribution is used by default.

• read_handshake() — this function is called when the initial handshake information is returned by the server. You can
capture the handshake information returned and provide additional checks before the authorization exchange takes place.

• read_auth() — this function is called when the authorization packet (user name, password, default database) are submitted
by the client to the server for authentication.

• read_auth_result() — this function is called when the server returns an authorization packet to the client indicating
whether the authorization succeeded.

• read_query() — this function is called each time a query is sent by the client to the server. You can use this to edit and ma-
nipulate the original query, including adding new queries before and after the original statement. You can also use this function
to return information directly to the client, bypassing the server, which can be useful to filter unwanted queries or queries that
exceed known limits.

• read_query_result() — this function is called each time a result is returned from the server, providing you have manu-
ally injected queries into the query queue. If you have not explicitly inject queries within the read_query() function then
this function is not triggered. You can use this to edit the result set, or to remove or filter the result sets generated from addi-
tional queries you injected into the queue when using read_query().

The table below describes the direction of flow of information at the point when the function is triggered.

Function Supplied Information Direction

connect_server() None Client to Server

read_handshake() Handshake packet Server to Client

read_auth() Authorization packet Client to Server

read_auth_result() Authorization response Server to Client

read_query() Query Client to Server

read_query_result() Query result Server to Client

By default, all functions return a result that indicates that the data should be passed on to the client or server (depending on the dir-
ection of the information being transferred). This return value can be overridden by explicitly returning a constant indicating that a
particular response should be sent. For example, it is possible to construct result set information by hand within read_query()
and to return the resultset directly to the client without ever sending the original query to the server.

In addition to these functions, a number of built-in structures provide control over how MySQL Proxy forwards on queries and re-
turns the results by providing a simplified interface to elements such as the list of queries and the groups of result sets that are re-
turned.

4.1. Proxy Scripting Sequence During Query Injection
The figure below gives an example of how the proxy might be used when injecting queries into the query queue. Because the proxy
sits between the client and MySQL server, what the proxy sends to the server, and the information that the proxy ultimately returns
to the client do not have to match or correlate. Once the client has connected to the proxy, the following sequence occurs for each
individual query sent by the client.

6

http://www.lua.org

1. The client submits one query to the proxy, the read_query() function within the proxy is triggered. The function adds the
query to the query queue.

2. Once manipulation by read_query() has completed, the queries are submitted, sequentially, to the MySQL server.

3. The MySQL server returns the results from each query, one result set for each query submitted. The
read_query_result() function is triggered for each result set, and each invocation can decide which result set to return
to the client

For example, you can queue additional queries into the global query queue to be processed by the server. This can be used to add
statistical information by adding queries before and after the original query, changing the original query:

SELECT * FROM City;

Into a sequence of queries:

SELECT NOW();
SELECT * FROM City;
SELECT NOW();

You can also modify the original statement, for example to add EXPLAIN to each statement executed to get information on how
the statement was processed, again altering our original SQL statement into a number of statements:

SELECT * FROM City;
EXPLAIN SELECT * FROM City;

In both of these examples, the client would have received more result sets than expected. Regardless of how you manipulate the in-
coming query and the returned result, the number of queries returned by the proxy must match the number of original queries sent
by the client.

You could adjust the client to handle the multiple result sets sent by the proxy, but in most cases you will want the existence of the
proxy to remain transparent. To ensure that the number of queries and result sets match, you can use the MySQL Proxy
read_query_result() to extract the additional result set information and return only the result set the client originally re-
quested back to the client. You can achieve this by giving each query that you add to the query queue a unique ID, and then filter
out queries that do not match the original query ID when processing them with read_query_result().

4.2. Internal Structures
There are a number of internal structures within the scripting element of MySQL Proxy. The primary structure is proxy and this
provides an interface to the many common structures used throughout the script, such as connection lists and configured backend
servers. Other structures, such as the incoming packet from the client and result sets are only available within the context of one of

MySQL Proxy Scripting

7

http://dev.mysql.com/doc/refman/5.0/en/explain.html

the scriptable functions.

Attribute Description

connection A structure containing the active client connections. For a list of attributes, see
proxy.connection.

servers A structure containing the list of configured backend servers. For a list of attributes, see
proxy.backends.

queries A structure containing the queue of queries that will be sent to the server during a single
client query. For a list of attributes, see proxy.queries.

PROXY_VERSION The version number of MySQL Proxy, encoded in hex. You can use this to check that the
version number supports a particular option from within the Lua script. Note that the value
is encoded as a hex value, so to check the version is at least 0.5.1 you compare against
0x00501.

proxy.connection

The proxy.connection object is read only, and provides information about the current connection.

Attribute Description

thread_id The thread ID of the connection.

backend_ndx The ID of the server used for this connection. This is an ID valid against the list of con-
figured servers available through the proxy.backends object.

proxy.backends

The proxy.backends table is partially writable and contains an array of all the configured backend servers and the server
metadata (IP address, status, etc.). You can determine the array index of the current connection using
proxy.connection["backend_ndx"] which is the index into this table of the backend server being used by the active con-
nection.

The attributes for each entry within the proxy.backends table are shown in this table.

Attribute Description

address The host name/port combination used for this connection

connected_clients The number of clients currently connected.

state The status of the backend server. See Section 4.2, “Internal Structures” [10].

proxy.queries

The proxy.queries object is a queue representing the list of queries to be sent to the server. The queue is not populated auto-
matically, but if you do not explicitly populate the queue then queries are passed on to the backend server verbatim. Also, if you do
not populate the query queue by hand, then the read_query_result() function is not triggered.

The following methods are supported for populating the proxy.queries object.

Function Description

append(id,packet) Appends a query to the end of the query queue. The id is an integer identifier that you can
use to recognize the query results when they are returned by the server. The packet should
be a properly formatted query packet.

prepend(id,packet) Prepends a query to the query queue. The id is an identifier that you can use to recognize
the query results when they are returned by the server. The packet should be a properly
formatted query packet.

reset() Empties the query queue.

len() Returns the number of query packets in the queue.

For example, you could append a query packet to the proxy.queries queue by using the append():

proxy.queries:append(1,packet)

proxy.response

MySQL Proxy Scripting

8

The proxy.response structure is used when you want to return your own MySQL response, instead of forwarding a packet that
you have received a backend server. The structure holds the response type information, an optional error message, and the result set
(rows/columns) that you want to return.

Attribute Description

type The type of the response. The type must be either MYSQLD_PACKET_OK or
MYSQLD_PACKET_ERR. If the MYSQLD_PACKET_ERR, then you should set the value of
the mysql.response.errmsg with a suitable error message.

errmsg A string containing the error message that will be returned to the client.

resultset A structure containing the result set information (columns and rows), identical to what
would be returned when returning a results from a SELECT query.

When using proxy.response you either set proxy.response.type to proxy.MYSQLD_PACKET_OK and then build
resultset to contain the results that you want to return, or set proxy.response.type to proxy.MYSQLD_PACKET_ERR
and set the proxy.response.errmsg to a string with the error message. To send the completed resultset or error message, you
should return the proxy.PROXY_SEND_RESULT to trigger the return of the packet information.

An example of this can be seen in the tutorial-resultset.lua script within the MySQL Proxy package:

if string.lower(command) == "show" and string.lower(option) == "querycounter" then

-- proxy.PROXY_SEND_RESULT requires
--
-- proxy.response.type to be either
-- * proxy.MYSQLD_PACKET_OK or
-- * proxy.MYSQLD_PACKET_ERR
--
-- for proxy.MYSQLD_PACKET_OK you need a resultset
-- * fields
-- * rows
--
-- for proxy.MYSQLD_PACKET_ERR
-- * errmsg
proxy.response.type = proxy.MYSQLD_PACKET_OK
proxy.response.resultset = {

fields = {
{ type = proxy.MYSQL_TYPE_LONG, name = "global_query_counter", },
{ type = proxy.MYSQL_TYPE_LONG, name = "query_counter", },

},
rows = {

{ proxy.global.query_counter, query_counter }
}

}
-- we have our result, send it back
return proxy.PROXY_SEND_RESULT

elseif string.lower(command) == "show" and string.lower(option) == "myerror" then
proxy.response.type = proxy.MYSQLD_PACKET_ERR
proxy.response.errmsg = "my first error"
return proxy.PROXY_SEND_RESULT

proxy.response.resultset

The proxy.response.resultset structure should be populated with the rows and columns of data that you want to return.
The structure contains the information about the entire result set, with the individual elements of the data shown in the table below.

Attribute Description

fields The definition of the columns being returned. This should be a dictionary structure with
the type specifying the MySQL data type, and the name specifying the column name.
Columns should be listed in the order of the column data that will be returned.

flags A number of flags related to the resultset. Valid flags include auto_commit (whether an
automatic commit was triggered), no_good_index_used (the query executed without
using an appropriate index), and no_index_used (the query executed without using any
index).

rows The actual row data. The information should be returned as an array of arrays. Each inner
array should contain the column data, with the outer array making up the entire result set.

warning_count The number of warnings for this result set.

affected_rows The number of rows affected by the original statement.

insert_id The last insert ID for an auto-incremented column in a table.

query_status The status of the query operation. You can use the MYSQLD_PACKET_OK or
MYSQLD_PACKET_ERR constants to populate this parameter.

MySQL Proxy Scripting

9

http://dev.mysql.com/doc/refman/5.0/en/select.html
http://dev.mysql.com/doc/refman/5.0/en/server-session-variables.html#sysvar_warning_count
http://dev.mysql.com/doc/refman/5.0/en/server-session-variables.html#sysvar_insert_id

For an example of the population of this table, see Section 4.2, “Internal Structures” [8].

Proxy Return State Constants

The following constants are used internally by the proxy to specify the response to send to the client or server. All constants are ex-
posed as values within the main proxy table.

Constant Description

PROXY_SEND_QUERY Causes the proxy to send the current contents of the queries queue to the server.

PROXY_SEND_RESULT Causes the proxy to send a result set back to the client.

PROXY_IGNORE_RESULT Causes the proxy to drop the result set (nothing is returned to the client).

As constants, these entities are available without qualification in the Lua scripts. For example, at the end of the
read_query_result() you might return PROXY_IGNORE_RESULT:

return proxy.PROXY_IGNORE_RESULT

Packet State Constants

The following states describe the status of a network packet. These items are entries within the main proxy table.

Constant Description

MYSQLD_PACKET_OK The packet is OK.

MYSQLD_PACKET_ERR The packet contains error information.

MYSQLD_PACKET_RAW The packet contains raw data.

Backend State/Type Constants

The following constants are used either to define the status of the backend server (the MySQL server to which the proxy is connec-
ted) or the type of backend server. These items are entries within the main proxy table.

Constant Description

BACKEND_STATE_UNKNOWN The current status is unknown.

BACKEND_STATE_UP The backend is known to be up (available).

BACKEND_STATE_DOWN The backend is known to be down (unavailable).

BACKEND_TYPE_UNKNOWN Backend type is unknown.

BACKEND_TYPE_RW Backend is available for read/write.

BACKEND_TYPE_RO Backend is available only for read-only use.

Server Command Constants

The following values are used in the packets exchanged between the client and server to identify the information in the rest of the
packet. These items are entries within the main proxy table. The packet type is defined as the first character in the sent packet. For
example, when intercepting packets from the client to edit or monitor a query you would check that the first byte of the packet was
of type proxy.COM_QUERY.

Constant Description

COM_SLEEP Sleep

COM_QUIT Quit

COM_INIT_DB Initialize database

COM_QUERY Query

COM_FIELD_LIST Field List

COM_CREATE_DB Create database

COM_DROP_DB Drop database

COM_REFRESH Refresh

COM_SHUTDOWN Shutdown

MySQL Proxy Scripting

10

Constant Description

COM_STATISTICS Statistics

COM_PROCESS_INFO Process List

COM_CONNECT Connect

COM_PROCESS_KILL Kill

COM_DEBUG Debug

COM_PING Ping

COM_TIME Time

COM_DELAYED_INSERT Delayed insert

COM_CHANGE_USER Change user

COM_BINLOG_DUMP Binlog dump

COM_TABLE_DUMP Table dump

COM_CONNECT_OUT Connect out

COM_REGISTER_SLAVE Register slave

COM_STMT_PREPARE Prepare server-side statement

COM_STMT_EXECUTE Execute server-side statement

COM_STMT_SEND_LONG_DATA Long data

COM_STMT_CLOSE Close server-side statement

COM_STMT_RESET Reset statement

COM_SET_OPTION Set option

COM_STMT_FETCH Fetch statement

COM_DAEMON Daemon (MySQL 5.1 only)

COM_ERROR Error

MySQL Type Constants

These constants are used to identify the field types in the query result data returned to clients from the result of a query. These
items are entries within the main proxy table.

Constant Field Type

MYSQL_TYPE_DECIMAL Decimal

MYSQL_TYPE_NEWDECIMAL Decimal (MySQL 5.0 or later)

MYSQL_TYPE_TINY Tiny

MYSQL_TYPE_SHORT Short

MYSQL_TYPE_LONG Long

MYSQL_TYPE_FLOAT Float

MYSQL_TYPE_DOUBLE Double

MYSQL_TYPE_NULL Null

MYSQL_TYPE_TIMESTAMP Timestamp

MYSQL_TYPE_LONGLONG Long long

MYSQL_TYPE_INT24 Integer

MYSQL_TYPE_DATE Date

MYSQL_TYPE_TIME Time

MYSQL_TYPE_DATETIME Datetime

MYSQL_TYPE_YEAR Year

MYSQL_TYPE_NEWDATE Date (MySQL 5.0 or later)

MYSQL_TYPE_ENUM Enumeration

MYSQL_TYPE_SET Set

MYSQL_TYPE_TINY_BLOB Tiny Blob

MYSQL_TYPE_MEDIUM_BLOB Medium Blob

MySQL Proxy Scripting

11

Constant Field Type

MYSQL_TYPE_LONG_BLOB Long Blob

MYSQL_TYPE_BLOB Blob

MYSQL_TYPE_VAR_STRING Varstring

MYSQL_TYPE_STRING String

MYSQL_TYPE_TINY Tiny (compatible with MYSQL_TYPE_CHAR)

MYSQL_TYPE_ENUM Enumeration (compatible with MYSQL_TYPE_INTERVAL)

MYSQL_TYPE_GEOMETRY Geometry

MYSQL_TYPE_BIT Bit

4.3. Capturing a connection with connect_server()
When the proxy accepts a connection from a MySQL client, the connect_server() function is called.

There are no arguments to the function, but you can use and if necessary manipulate the information in the proxy.connection
table, which is unique to each client session.

For example, if you have multiple backend servers then you can set the server to be used by that connection by setting the value of
proxy.connection.backend_ndx to a valid server number. The code below will choose between two servers based on
whether the current time in minutes is odd or even:

function connect_server()
print("--> a client really wants to talk to a server")
if (tonumber(os.date("%M")) % 2 == 0) then

proxy.connection.backend_ndx = 2
print("Choosing backend 2")

else
proxy.connection.backend_ndx = 1
print("Choosing backend 1")

end
print("Using " .. proxy.backends[proxy.connection.backend_ndx].address)

end

In this example the IP address/port combination is also displayed by accessing the information from the internal
proxy.backends table.

4.4. Examining the handshake with read_handshake()
Handshake information is sent by the server to the client after the initial connection (through connect_server()) has been
made. The handshake information contains details about the MySQL version, the ID of the thread that will handle the connection
information, and the IP address of the client and server. This information is exposed through a Lua table as the only argument to the
function.

• mysqld_version — the version of the MySQL server.

• thread_id — the thread ID.

• scramble — the password scramble buffer.

• server_addr — the IP address of the server.

• client_addr — the IP address of the client.

For example, you can print out the handshake data and refuse clients by IP address with the following function:

function read_handshake(auth)
print("<-- let's send him some information about us")
print(" mysqld-version: " .. auth.mysqld_version)
print(" thread-id : " .. auth.thread_id)
print(" scramble-buf : " .. string.format("%q", auth.scramble))
print(" server-addr : " .. auth.server_addr)
print(" client-addr : " .. auth.client_addr)
if not auth.client_addr:match("^127.0.0.1:") then

proxy.response.type = proxy.MYSQLD_PACKET_ERR
proxy.response.errmsg = "only local connects are allowed"
print("we don't like this client");
return proxy.PROXY_SEND_RESULT

end
end

MySQL Proxy Scripting

12

Note that you have to return an error packet to the client by using proxy.PROXY_SEND_RESULT.

4.5. Examining the authentication credentials with read_auth()
The read_auth() function is triggered when an authentication handshake is initiated by the client. In the execution sequence,
read_auth() occurs immediately after read_handshake(), so the server selection has already been made, but the connec-
tion and authorization information has not yet been provided to the backend server.

The function accepts a single argument, an Lua table containing the authorization information for the handshake process. The
entries in the table are:

• username — the user login for connecting to the server.

• password — the password, encrypted, to be used when connecting.

• default_db — the default database to be used once the connection has been made.

For example, you can print the user name and password supplied during authorization using:

function read_auth(auth)
print(" username : " .. auth.username)
print(" password : " .. string.format("%q", auth.password))

end

You can interrupt the authentication process within this function and return an error packet back to the client by constructing a new
packet and returning proxy.PROXY_SEND_RESULT:

proxy.response.type = proxy.MYSQLD_PACKET_ERR
proxy.response.errmsg = "Logins are not allowed"
return proxy.PROXY_SEND_RESULT

4.6. Accessing authentication information with
read_auth_result()

The return packet from the server during authentication is captured by read_auth_result(). The only argument to this func-
tion is the authentication packet returned by the server. As the packet is a raw MySQL network protocol packet, you must access
the first byte to identify the packet type and contents. The MYSQLD_PACKET_ERR and MYSQLD_PACKET_OK constants can be
used to identify whether the authentication was successful:

function read_auth_result(auth)
local state = auth.packet:byte()
if state == proxy.MYSQLD_PACKET_OK then

print("<-- auth ok");
elseif state == proxy.MYSQLD_PACKET_ERR then

print("<-- auth failed");
else

print("<-- auth ... don't know: " .. string.format("%q", auth.packet));
end

end

4.7. Manipulating Queries with read_query()
The read_query() function is called once for each query submitted by the client and accepts a single argument, the query pack-
et that was provided. To access the content of the packet you must parse the packet contents manually.

For example, you can intercept a query packet and print out the contents using the following function definition:

function read_query(packet)
if packet:byte() == proxy.COM_QUERY then

print("we got a normal query: " .. packet:sub(2))
end

end

This example checks the first byte of the packet to determine the type. If the type is COM_QUERY (see Section 4.2, “Internal Struc-
tures” [10]), then we extract the query from the packet and print it out. The structure of the packet type supplied is important. In the
case of a COM_QUERY packet, the remaining contents of the packet are the text of the query string. In this example, no changes
have been made to the query or the list of queries that will ultimately be sent to the MySQL server.

To modify a query, or add new queries, you must populate the query queue (proxy.queries) and then execute the queries that

MySQL Proxy Scripting

13

you have placed into the queue. If you do not modify the original query or the queue, then the query received from the client is sent
to the MySQL server verbatim.

When adding queries to the queue, you should follow these guidelines:

• The packets inserted into the queue must be valid query packets. For each packet, you must set the initial byte to the packet
type. If you are appending a query, you can append the query statement to the rest of the packet.

• Once you add a query to the queue, the queue is used as the source for queries sent to the server. If you add a query to the queue
to add more information, you must also add the original query to the queue or it will not be executed.

• Once the queue has been populated, you must set the return value from read_query() to indicate whether the query queue
should be sent to the server.

• When you add queries to the queue, you should add an ID. The ID you specify is returned with the result set so that you identify
each query and corresponding result set. The ID has no other purpose than as an identifier for correlating the query and result-
set. When operating in a passive mode, during profiling for example, you want to identify the original query and the corres-
ponding resultset so that the results expect by the client can be returned correctly.

• Unless your client is designed to cope with more result sets than queries, you should ensure that the number of queries from the
client match the number of results sets returned to the client. Using the unique ID and removing result sets you inserted will
help.

Normally, the read_query() and read_query_result() function are used in conjunction with each other to inject addi-
tional queries and remove the additional result sets. However, read_query_result() is only called if you populate the query
queue within read_query().

4.8. Manipulating Results with read_query_result()
The read_query_result() is called for each result set returned by the server only if you have manually injected queries into
the query queue. If you have not manipulated the query queue then this function is not called. The function supports a single argu-
ment, the result packet, which provides a number of properties:

• id — the ID of the result set, which corresponds to the ID that was set when the query packet was submitted to the server when
using append(id) on the query queue.

• query — the text of the original query.

• query_time — the number of microseconds required to receive the first row of a result set.

• response_time — the number of microseconds required to receive the last row of the result set.

• resultset — the content of the result set data.

By accessing the result information from the MySQL server you can extract the results that match the queries that you injected, re-
turn different result sets (for example, from a modified query), and even create your own result sets.

The Lua script below, for example, will output the query, followed by the query time and response time (i.e. the time to execute the
query and the time to return the data for the query) for each query sent to the server:

function read_query(packet)
if packet:byte() == proxy.COM_QUERY then

print("we got a normal query: " .. packet:sub(2))
proxy.queries:append(1, packet)
return proxy.PROXY_SEND_QUERY

end
end
function read_query_result(inj)

print("query-time: " .. (inj.query_time / 1000) .. "ms")
print("response-time: " .. (inj.response_time / 1000) .. "ms")

end

You can access the rows of returned results from the resultset by accessing the rows property of the resultset property of the result
that is exposed through read_query_result(). For example, you can iterate over the results showing the first column from
each row using this Lua fragment:

for row in inj.resultset.rows do
print("injected query returned: " .. row[1])

end

MySQL Proxy Scripting

14

Just like read_query(), read_query_result() can return different values for each result according to the result returned.
If you have injected additional queries into the query queue, for example, then you will want to remove the results returned from
those additional queries and only return the results from the query originally submitted by the client.

The example below injects additional SELECT NOW() statements into the query queue, giving them a different ID to the ID of the
original query. Within read_query_result(), if the ID for the injected queries is identified, we display the result row, and re-
turn the proxy.PROXY_IGNORE_RESULT from the function so that the result is not returned to the client. If the result is from
any other query, we print out the query time information for the query and return the default, which passes on the result set un-
changed. We could also have explicitly returned proxy.PROXY_IGNORE_RESULT to the MySQL client.

function read_query(packet)
if packet:byte() == proxy.COM_QUERY then

proxy.queries:append(2, string.char(proxy.COM_QUERY) .. "SELECT NOW()")
proxy.queries:append(1, packet)
proxy.queries:append(2, string.char(proxy.COM_QUERY) .. "SELECT NOW()")
return proxy.PROXY_SEND_QUERY

end
end
function read_query_result(inj)

if inj.id == 2 then
for row in inj.resultset.rows do

print("injected query returned: " .. row[1])
end
return proxy.PROXY_IGNORE_RESULT

else
print("query-time: " .. (inj.query_time / 1000) .. "ms")
print("response-time: " .. (inj.response_time / 1000) .. "ms")

end
end

For further examples, see Chapter 5, Using MySQL Proxy.

MySQL Proxy Scripting

15

Chapter 5. Using MySQL Proxy
There are a number of different ways to use MySQL Proxy. At the most basic level, you can allow MySQL Proxy to pass on quer-
ies from clients to a single server. To use MySQL proxy in this mode, you just have to specify the backend server that the proxy
should connect to on the command line:

shell> mysql-proxy --proxy-backend-addresses=sakila:3306

If you specify multiple backend MySQL servers then the proxy will connect each client to each server in a round-robin fashion. For
example, imagine you have two MySQL servers, A and B. The first client to connect will be connected to server A, the second to
server B, the third to server C. For example:

shell> mysql-proxy \
--proxy-backend-addresses=narcissus:3306 \
--proxy-backend-addresses=nostromo:3306

When you have specified multiple servers in this way, the proxy will automatically identify when a MySQL server has become un-
available and mark it accordingly. New connections will automatically be attached to a server that is available, and a warning will
be reported to the standard output from mysql-proxy:

network-mysqld.c.367: connect(nostromo:3306) failed: Connection refused
network-mysqld-proxy.c.2405: connecting to backend (nostromo:3306) failed, marking it as down for ...

Lua scripts enable a finer level of control, both over the connections and their distribution and how queries and result sets are pro-
cessed. When using an Lua script, you must specify the name of the script on the command line using the -
-proxy-lua-script option:

shell> mysql-proxy --proxy-lua-script=mc.lua --proxy-backend-addresses=sakila:3306

When you specify a script, the script is not executed until a connection is made. This means that faults with the script will not be
raised until the script is executed. Script faults will not affect the distribution of queries to backend MySQL servers.

Note

Because the script is not read until the connection is made, you can modify the contents of the Lua script file while the
proxy is still running and the script will automatically be used for the next connection. This ensures that MySQL
Proxy remains available because it does not have to be restarted for the changes to take effect.

5.1. Using the Administration Interface
The mysql-proxy administration interface can be accessed using any MySQL client using the standard protocols. You can use
the administration interface to gain information about the proxy server as a whole - standard connections to the proxy are isolated
to operate as if you were connected directly to the backend MySQL server. Currently, the interface supports a limited set of func-
tionality designed to provide connection and configuration information.

Because connectivity is provided over the standard MySQL protocol, you must access this information using SQL syntax. By de-
fault, the administration port is configured as 4041. You can change this port number using the --admin-address command-
line option.

To get a list of the currently active connections to the proxy:

mysql> select * from proxy_connections;
+------+--------+-------+------+
| id | type | state | db |
+------+--------+-------+------+
0	server	0	
1	proxy	0	
2	server	10	
+------+--------+-------+------+
3 rows in set (0.00 sec)

To get the current configuration:

mysql> select * from proxy_config;
+----------------------------+----------------------+
| option | value |
+----------------------------+----------------------+
admin.address	:4041
proxy.address	:4040
proxy.lua_script	mc.lua
proxy.backend_addresses[0]	mysql:3306
proxy.fix_bug_25371	0

16

| proxy.profiling | 1 |
+----------------------------+----------------------+
6 rows in set (0.01 sec)

Using MySQL Proxy

17

Chapter 6. MySQL Proxy FAQ
Questions

• 6.1: Is the system context switch expensive, how much overhead does the lua script add?

• 6.2: How do I use a socket with MySQL Proxy? Proxy change logs mention that support for UNIX sockets has been added.

• 6.3: Can I use MySQL Proxy with all versions of MySQL?

• 6.4: If MySQL Proxy has to live on same machine as MySQL, are there any tuning considerations to ensure both perform op-
timally?

• 6.5: Do proxy applications run on a separate server? If not, what is the overhead incurred by Proxy on the DB server side?

• 6.6: Can MySQL Proxy handle SSL connections?

• 6.7: What is the limit for max-connections on the server?

• 6.8: As the script is re-read by proxy, does it cache this or is it looking at the file system with each request?

• 6.9: With load balancing, what happen to transactions ? Are all queries sent to the same server ?

• 6.10: Can I run MySQL Proxy as a daemon?

• 6.11: What about caching the authorization info so clients connecting are given back-end connections that were established
with identical authorization information, thus saving a few more round trips?

• 6.12: Could MySQL Proxy be used to capture passwords?

• 6.13: Can MySQL Proxy be used on slaves and intercept binlog messages?

• 6.14: MySQL Proxy can handle about 5000 connections, what is the limit on a MySQL server?

• 6.15: How does MySQL Proxy compare to DBSlayer ?

• 6.16: I currently use SQL Relay for efficient connection pooling with a number of apache processes connecting to a MySQL
server. Can MySQL proxy currently accomplish this. My goal is to minimize connection latency while keeping temporary
tables available.

• 6.17: The global namespace variable example with quotas does not persist after a reboot, is that correct?

• 6.18: I tried using MySQL Proxy without any Lua script to try a round-robin type load balancing. In this case, if the first data-
base in the list is down, MySQL Proxy would not connect the client to the second database in the list.

• 6.19: Would the Java-only connection pooling solution work for multiple web servers? With this, I'd assume you can pool
across many web servers at once?

• 6.20: Is the MySQL Proxy an API ?

• 6.21: If you have multiple databases on the same box, can you use proxy to connect to databases on default port 3306?

• 6.22: Will Proxy be deprecated for use with connection pooling once MySQL 6.x comes out? Or will 6.x integrate proxy more
deeply?

• 6.23: In load balancing, how can I separate reads from writes?

• 6.24: We've looked at using MySQL Proxy but we're concerned about the alpha status - when do you think the proxy would be
considered production ready?

• 6.25: Will the proxy road map involve moving popular features from lua to C? For example Read/Write splitting

• 6.26: Are these reserved function names (e.g., error_result) that get automatically called?

• 6.27: Can you explain the status of your work with memcached and MySQL Proxy?

• 6.28: Is there any big web site using MySQL Proxy ? For what purpose and what transaction rate have they achieved.

• 6.29: So the authentication when connection pooling has to be done at every connection? What's the authentication latency?

18

• 6.30: Is it possible to use the MySQL proxy w/ updating a Lucene index (or Solr) by making TCP calls to that server to update?

• 6.31: Isn't MySQL Proxy similar to what is provided by Java connection pools?

• 6.32: Are there tools for isolating problems? How can someone figure out if a problem is in the client, in the db or in the proxy?

• 6.33: Can you dynamically reconfigure the pool of MySQL servers that MySQL Proxy will load balance to?

• 6.34: Given that there is a connect_server function, can a Lua script link up with multiple servers?

• 6.35: Adding a proxy must add latency to the connection, how big is that latency?

• 6.36: In the quick poll, I see "Load Balancer: read-write splitting" as an option, so would it be correct to say that there are no
scripts written for Proxy yet to do this?

• 6.37: Is it "safe" to use LuaSocket with proxy scripts?

• 6.38: How different is MySQL Proxy from DBCP (Database connection pooling) for Apache in terms of connection pooling?

• 6.39: Do you have make one large script and call at proxy startup, can I change scripts without stopping and restarting
(interrupting) the proxy?

Questions and Answers

6.1: Is the system context switch expensive, how much overhead does the lua script add?

Lua is fast and the overhead should be small enough for most applications. The raw packet-overhead is around 400 microseconds.

6.2: How do I use a socket with MySQL Proxy? Proxy change logs mention that support for UNIX sockets has been added.

Just specify the path to the socket:

--proxy-backend-addresses=/path/to/socket

However it appears that --proxy-address=/path/to/socket does not work on the front end. It would be nice if someone
added this feature.

6.3: Can I use MySQL Proxy with all versions of MySQL?

MySQL Proxy is designed to work with MySQL 5.0 or higher, and supports the MySQL network protocol for 5.0 and higher.

6.4: If MySQL Proxy has to live on same machine as MySQL, are there any tuning considerations to ensure both perform
optimally?

MySQL Proxy can live on any box: application, db or its own box. MySQL Proxy uses comparatively little CPU or RAM, so addi-
tional requirements or overhead is negligible.

6.5: Do proxy applications run on a separate server? If not, what is the overhead incurred by Proxy on the DB server side?

You can run the proxy on the application server, on its own box or on the DB-server depending on the use-case

6.6: Can MySQL Proxy handle SSL connections?

No, being the man-in-the-middle, Proxy can't handle encrypted sessions because it cannot share the SSL information.

6.7: What is the limit for max-connections on the server?

Around 1024 connections the MySQL Server may run out of threads it can spawn. Leaving it at around 100 is advised.

6.8: As the script is re-read by proxy, does it cache this or is it looking at the file system with each request?

It looks for the script at client-connect and reads it if it has changed, otherwise it uses the cached version.

6.9: With load balancing, what happen to transactions ? Are all queries sent to the same server ?

Without any special customization the whole connection is sent to the same server. That keeps the whole connection state intact.

6.10: Can I run MySQL Proxy as a daemon?

Starting from version 0.6.0, the Proxy is launched as a daemon by default. If you want to avoid this, use the -D or --no-daemon
option. To keep track of the process ID, the daemon can be started with the additional option --pid-file=file, to save the

MySQL Proxy FAQ

19

PID to a known file name. On version 0.5.x, the Proxy can't be started natively as a daemon

6.11: What about caching the authorization info so clients connecting are given back-end connections that were established
with identical authorization information, thus saving a few more round trips?

There is an option that provides this functionality --proxy-pool-no-change-user.

6.12: Could MySQL Proxy be used to capture passwords?

The MySQL network protocol does not allow passwords to be sent in clear-text, all you could capture is the encrypted version.

6.13: Can MySQL Proxy be used on slaves and intercept binlog messages?

We are working on that. See http://jan.kneschke.de/2008/5/30/mysql-proxy-rbr-to-sbr-decoding for an example.

6.14: MySQL Proxy can handle about 5000 connections, what is the limit on a MySQL server?

Se your max-connections settings. By default the setting is 150, the proxy can handle a lot more.

6.15: How does MySQL Proxy compare to DBSlayer ?

DBSlayer is a REST->MySQL tool, MySQL Proxy is transparent to your application. No change to the application is needed.

6.16: I currently use SQL Relay for efficient connection pooling with a number of apache processes connecting to a MySQL
server. Can MySQL proxy currently accomplish this. My goal is to minimize connection latency while keeping temporary
tables available.

Yes.

6.17: The global namespace variable example with quotas does not persist after a reboot, is that correct?

Yes. if you restart the proxy, you lose the results, unless you save them in a file.

6.18: I tried using MySQL Proxy without any Lua script to try a round-robin type load balancing. In this case, if the first
database in the list is down, MySQL Proxy would not connect the client to the second database in the list.

This issue is fixed in version 0.7.0.

6.19: Would the Java-only connection pooling solution work for multiple web servers? With this, I'd assume you can pool
across many web servers at once?

Yes. But you can also start one proxy on each application server to get a similar behaviour as you have it already.

6.20: Is the MySQL Proxy an API ?

No, MySQL Proxy is an application that forwards packets from a client to a server using the MySQL network protocol. The
MySQL proxy provides a API allowing you to change its behaviour.

6.21: If you have multiple databases on the same box, can you use proxy to connect to databases on default port 3306?

Yes, MySQL Proxy can listen on any port. Providing none of the MySQL servers are listening on the same port.

6.22: Will Proxy be deprecated for use with connection pooling once MySQL 6.x comes out? Or will 6.x integrate proxy
more deeply?

The logic about the pooling is controlled by the lua scripts, you can enable and disable it if you like. There are no plans to embed
the current MySQL Proxy functionality into the MySQL Server.

6.23: In load balancing, how can I separate reads from writes?

There is no automatic separation of queries that perform reads or writes to the different backend servers. However, you can specify
to mysql-proxy that one or more of the 'backend' MyuSQL servers are read-only.

$ mysql-proxy \
--proxy-backend-addresses=10.0.1.2:3306 \
--proxy-read-only-backend-addresses=10.0.1.3:3306 &

In the next releases we will add connection pooling and read/write splitting to make this more useful. See also MySQL Load Balan-
cer.

6.24: We've looked at using MySQL Proxy but we're concerned about the alpha status - when do you think the proxy would
be considered production ready?

MySQL Proxy FAQ

20

http://jan.kneschke.de/2008/5/30/mysql-proxy-rbr-to-sbr-decoding
http://dev.mysql.com/doc/refman/5.1/en/load-balancer.html
http://dev.mysql.com/doc/refman/5.1/en/load-balancer.html

We are on the road to the next feature release: 0.7.0. It will improve the performance quite a bit. After that we may be able to enter
the beta phase.

6.25: Will the proxy road map involve moving popular features from lua to C? For example Read/Write splitting

We will keep the high-level parts in the Lua layer to be able to adjust to special situations without a rebuild. Read/Write splitting
sometimes needs external knowledge that may only be available by the DBA.

6.26: Are these reserved function names (e.g., error_result) that get automatically called?

Only functions and values starting with proxy.* are provided by the proxy. All others are provided by you.

6.27: Can you explain the status of your work with memcached and MySQL Proxy?

There are some ideas to integrate proxy and memcache a bit, but no code yet.

6.28: Is there any big web site using MySQL Proxy ? For what purpose and what transaction rate have they achieved.

Yes, gaiaonline. They have tested MySQL Proxy and seen it handle 2400 queries per second through the proxy.

6.29: So the authentication when connection pooling has to be done at every connection? What's the authentication latency?

You can skip the round-trip and use the connection as it was added to the pool. As long as the application cleans up the temporary
tables it used. The overhead is (as always) around 400 microseconds.

6.30: Is it possible to use the MySQL proxy w/ updating a Lucene index (or Solr) by making TCP calls to that server to up-
date?

Yes, but it isn't advised for now.

6.31: Isn't MySQL Proxy similar to what is provided by Java connection pools?

Yes and no. Java connection pools are specific to Java applications, MySQL Proxy works with any client API that talks the
MySQL network protocol. Also, connection pools do not provide any functionality for intelligently examining the network packets
and modifying the contents.

6.32: Are there tools for isolating problems? How can someone figure out if a problem is in the client, in the db or in the
proxy?

You can set a debug script in the proxy, which is an exceptionally good tool for this purpose. You can see very clearly which com-
ponent is causing the problem, if you set the right breakpoints.

6.33: Can you dynamically reconfigure the pool of MySQL servers that MySQL Proxy will load balance to?

Not yet, it is on the list. We are working on a administration interface for that purpose.

6.34: Given that there is a connect_server function, can a Lua script link up with multiple servers?

The proxy provides some tutorials in the source-package, one is examples/tutorial-keepalive.lua.

6.35: Adding a proxy must add latency to the connection, how big is that latency?

In the range of 400microseconds

6.36: In the quick poll, I see "Load Balancer: read-write splitting" as an option, so would it be correct to say that there are
no scripts written for Proxy yet to do this?

There is a proof of concept script for that included. But its far from perfect and may not work for you yet.

6.37: Is it "safe" to use LuaSocket with proxy scripts?

You can, but it is not advised as it may block.

6.38: How different is MySQL Proxy from DBCP (Database connection pooling) for Apache in terms of connection pool-
ing?

Connection Pooling is just one use-case of the MySQL Proxy. You can use it for a lot more and it works in cases where you can't
use DBCP (like if you don't have Java).

6.39: Do you have make one large script and call at proxy startup, can I change scripts without stopping and restarting
(interrupting) the proxy?

MySQL Proxy FAQ

21

http://gaiaonline.com/

You can just change the script and the proxy will reload it when a client connects.

MySQL Proxy FAQ

22

	MySQL Proxy Guide
	MySQL Proxy
	Chapter 1. MySQL Proxy Supported Platforms
	Chapter 2. Installing MySQL Proxy
	2.1. Installing MySQL Proxy from a binary distribution
	2.2. Installing MySQL Proxy from a source distribution
	2.3. Installing MySQL Proxy from the Subversion repository

	Chapter 3. MySQL Proxy Command-Line Options
	Chapter 4. MySQL Proxy Scripting
	4.1. Proxy Scripting Sequence During Query Injection
	4.2. Internal Structures
	4.3. Capturing a connection with connect_server()
	4.4. Examining the handshake with read_handshake()
	4.5. Examining the authentication credentials with read_auth()
	4.6. Accessing authentication information with read_auth_result()
	4.7. Manipulating Queries with read_query()
	4.8. Manipulating Results with read_query_result()

	Chapter 5. Using MySQL Proxy
	5.1. Using the Administration Interface

	Chapter 6. MySQL Proxy FAQ

